

Ensuring Life Cycle Supportability through the Application of Systems Engineering Processes

24 October 2000

Mike Dalton NAVSEA Keyport mdalton@kpt.nuwc.navy.mil (360) 315-7527

- Overview
- Introduction
- Technical Description
- Approach
- Implementation Process
- Results
- Summary

OVERVIEW

- Successfully Demonstrated Life-Cycle Supportability for Large-Scale COTS Training Technology Insertion Program through the Application of Systems Engineering Processes
- Provided Processes and Capabilities to Support Implementation Requirements and Expanded Engineering Focus on Total Training System

INTRODUCTION

Description

- Large Scale COTS Training Technology Infusion Program
 - Implementation of PC/LAN Based Electronic Classrooms
 - Multi-Year Implementation
 - Planned Implementation of 200+ Classrooms
 - Dynamic Requirements/Technology Environment

Objectives

- Focus on Customer Needs by Addressing Functional, Product Implementation and Life-Cycle Requirements
- Provide Manageability of COTS Technology Cycles
- > Provide Life-Cycle Management at the Lowest Possible Cost

TECHNICAL DESCRIPTION

Implementation approach was to engineer the Delivery System as a

training device.

TECHNICAL DESCRIPTION

Training Device

- > Pentium II Personal Computers
- Windows NT 4.0 LAN
- Dual Processor Pentium III Servers
- Server Farm (3-8 servers, 20-500 clients)
- > Document Camera
- Video Control System
- > Printer
- > Projector
- > Interactive White Board
- Local Area Network

Typical Installation

- > 5 Electronic Classrooms
- > 90-120 Personal Computers
- 3-5 Servers (PDC, BDC, 1-3 Application Severs)

APPROAGH

- Design Utilizing a System Life-Cycle Focus to be Simultaneously Responsive to Customer Needs and Life-Cycle Outcomes
 - > Life-Cycle Model
- Perform a Life-Cycle Cost Analysis to Assure Final System Design Complies with Program Supportability Requirements
 - > Design and Integration Process
- Implement a Configuration Management Model to Account for Future Customer Requirements, Product Improvement, and Evolving Technology
 - > System Configuration Management Process

Life-Cycle Model

 Model Adapted to Support Rapid Applications Development Approach

Design & Integration Process

APPROAGH

Supportability Approach Determination

MARKET INVESTIGATION

- Complexity
- Procurement Cost
- Failure Rate
- Repairability
- Product Family Depth
- Customer Base

SUPPORTABILITY REQUIREMENTS

- Preliminary Design
- Improvement Philosophy
- Maintenance Concept
- System Ao

SUPPORTABILITY ANALYSIS

- Strategy Development
- Supportability Analysis
- Life-Cycle Cost Analysis

NDI/COTS SUPPORTABILITY APPROACH

- Final System Design
- Supportability Program
- Sparing Approach
- Response Times
- Warranty Requirements

Ao = Mean Time Between Failure

Mean Time Between Failure + Mean Down Time

System Configuration Management Process

What We Have . . .

- ✓ Classroom Design Baseline
- ✓ Supportability Program Coupled with Classroom Design that meets Ao Requirement

Further Challenges . . .

- Management of Dynamic Requirements Environment
- Management of Rapid Technology Cycles

Approach . . .

Implement Planned System Improvement Process Model

Planned System Improvement Process Model

- ➤ Formal Process for Ongoing Systematic Evolvement of System Requirements (Functional Baselines)
- ➤ Establishes Design and Integration Cycles to Produce Evolving System Baselines (Product Baselines)
- > Provides System Configuration Control Process for Managing Baseline Improvement

System Configuration Management Process

What We Have . . .

- ✓ Classroom Design Baseline
- ✓ Supportability Program Coupled with Classroom Design that meets Ao Requirement
- ✓ Planned System Improvement Process Model that Provides:
 - Management of Dynamic Requirements Environment
 - Management of Rapid Technology Cycles

Further Challenges . . .

Management of Multi-Year Implementation

Approach . . .

Implement System Configuration Management Process

IMPLEMENTATION PROCESS

System Configuration Management Process

Training Device Installations

168 Training Devices Field-to-Date

Failure Rate Based on Time in Service

Note: Version 3.0 was implemented from mid-FY99 through the end FY00. Failure data is currently being collected and processed.

SUMMARY

- Over the past 5 years have designed, implemented, and provided Life-Cycle Maintenance for close to 200 COTS-based Training Devices.
- Systematically reduced Life-Cycle Maintenance costs per each product base.
- Developed and implemented several processes and capabilities and have successfully applied them to other business ventures.

